![]() |
|
|
Структура и функции коры большого мозгах возникают локальные потенциалы. Вызванные ими токи без особого декремента проникают е тело клетки, а отсюда выходят через ближайшие синаптические участки, где электропроводность немного больше, чеммежду синапсами. Выйдяиз клетки, токи проникают в синаптические окончания и производят их анэлектротоническую блокаду, а выходя из синаптического окончания, вызывают деполяризацию пресинаптического волоконца. Вследствие всего этого приходящие по афферентам нервные импульсы не в состоянии подействовать на клетку. При этом клетка может гиперполяризоваться, ибо несмотря на некоторую деполяризацию постсинаптической мембраны в связи с выходом дендритных токов из клетки, благодаря блокированию синапсов в клетке исчезает та деполяризация, которая обычно вызывается под влиянием постоянной импульсации со стороны других клеток коры и подкорки. Выше мы пришли к выводу, что в пирамидных клетках электрические потенциалы своими токами, распространяющимися по дендритам электротонически, производят анэлектротоническую блокаду дендритных синапсов и тем самым вызывают торможение дендритов. Сейчас мы сделали аналогичное заключение относительно торможения клеток в пирамидных нейронах. 49 Следовательно, дендриты и тело клетки в пирамидных нейронах находятся в реципрокных отношениях: усиленная активация клетки приводит к торможению дендритов, а усиленная активация дендритов, наоборот,— к торможению клетки. По наблюдениям Полякова и других, известно, что коллатерали аксонов пирамидных нейронов главным образом пересекают дендриты соседних пирамидных нейронов или контактируют с ними. Это видно на рис. 38. С этим согласуется и физиологическое наблюдение. По данным Вулси и Чанга (45), при антидромном раздражении пирамидных путей в области продолговатого мозга, в коре мозга возникают медленные потенциалы, что указывает Рис. 37. Угнетение «спонтанной» электрической активности и «первичных ответов» от звуковых толчков при раздражении поверхности коры Кошка под нембуталовым наркозом. «Активный» отводящий электрод расположен на среднейэктосильвиевой извилине; второй отводящий электрод на сигмоидальной извилине; раздражающие электроды — на поверхности средней эктосильвиевой извилины на расстоянии 4 мм от отводящего электрода. Усилитель с большой постоянной времени. А — эффекты звуковых толчков с частотой 5 в сек. и затем эффект присоединенного раздражения коры (частота — 50 в сек., интенсивность — 12 е); Б — продолжение комбинаций раздражений через 1,2 сек. и прекращение раздражения мозга при непрекращающемся звуковом раздражении; В— непосредственное продолжение Б (Беритов и Ройтбак) на активацию дендритов коллатералями раздражаемых пирамидных нейронов. Мы находим, что когда возбуждается определенная группа пирамидных нейронов и одновременно через их коллатерали активируются дендриты ближайших пирамидных нейронов, то, согласно данной нашей концепции торможения, должно происходить торможение этих пирамидных нейронов (см. рис. 40). Этим путем осуществляется локализирование производимой корковой реакции. Коллатерали аксона пирамидного нейрона могут оканчиваться и на собственных дендритах (см. рис. 38). Активация этих дендритов, как указывалось, должна вызывать торможение клетки. Но в определенных случаях, когда клетка только что возбудилась и деполяризация клеточной мембраны значительна, дендритный ток, возникший в базальных дендритах путем импульсации через коллатерали данного же нейрона, может так усилить деполяризацию близлежащего начального участка аксона, что вызывает распространяющееся возбуждение. При этом, конечно, дендритный ток, выходя из клетки также через синапсы, будет в некоторой мере блокировать пресинаптические мембраны. Однако это обстоятельство может не мешать означенному деполяризующему действию на начальный участок аксона. Возможно, что возбуждение с правильным и высоким ритмом 100—200 в сек. и выше, которое иногда наблюдал Джаспер при отведении от пирамидных клеток, в какойто мере зависело от такого самовозбуждения клетки через свои коллатерали. На рис. 39 дается схема распространения дендритных электрических токов в пирамидном нейроне при раздражении корковой поверхности и производимого ими торможения соседней пирамидной клетки. 50 Рис. 38. Схема связей афферентных волокон со звездчатыми и пирамидными клеткам!Гкоры мозга В I слое 'коры с верхушечными дендритами пирамидных нейронов ^контактируют ' горизонтальные аксоны клеток I слоя и аксон асссоциационной клетки Мартинотти. С верхушечными дендритами во II и III слоях контактируют афференты, приходящие из других отделов нервной системы, аксоны клеток Мартинотти и множество других аксонов. С ветвлениями дендрита в его нижней трети (3)| контактируют коллатерали аксонов клеток Мартинотти, коллатерали аксона исходной пирамидной клетки (контакт на себя). С телом (4) пирамидных клеток контактируют аксоны звездчатых клеток, коллатерали аксонов других пирамидных клеток. С базальвыми дендритами (5) контактируют аксоны звездчатых клеток* Каждая короткоаксонная зв |
[каталог] [статьи] [доска объявлений] [обратная связь] |