![]() |
|
|
Медико-биологическая статистикалияет на сердечно-сосудистую систему, то не исключено, что он отрицательно влияет, к примеру, на органы дыхания. Какой из эффектов перевесит и как это скажется на конечном результате — предвидеть трудно. Вот почему влияние препарата на любой показатель, будь то артериальное давление или сердечный индекс, нельзя считать доказательством его эффективности, пока не доказана клиническая эффективность. Иными словами, следует четко различать показатели процесса — всевозможные изменения биохимических, физиологических и прочих параметров, которые, как мы полагаем, играют положительную или отрицательную роль, — и показатели результата, обладающие реальной клинической значимостью. Так, изменения артериального давления и сердечного индекса под действием галотана и морфина — это показатели процесса, которые никак не сказались на показателе результата — операционной летальности. Если бы мы довольствовались наблюдением показателей процесса, то заключили бы, что морфин лучше галотана, хотя, как оказалось, выбор анестетика на летальность вообще не влияет. Читая медицинские публикации или слушая аргументы сторонника того или иного метода лечения, следует прежде всего уяснить, о каких показателях идет речь — процесса или результата. Продемонстрировать воздействие некоторого фактора на процесс существенно легче, чем выяснить, влияет ли он на результат. Регистрация показателей процесса обычно проста и не занимает много времени. Напротив, выяснение результата, как правило, требует длительной кропотливой работы и нередко связано с субъективными проблемами измерений, особенно если речь идет о качестве жизни. И все же, решая, необходим ли предлагаемый метод лечения, нужно удостовериться, что он положительно влияет именно на показатели результата. Поверьте, больного и его семью прежде всего волнует результат, а не процесс. Тромбоз шунта у больных на гемодиализе Гемодиализ позволяет сохранить жизнь людям, страдающим хронической почечной недостаточностью. При гемодиализе кровь больного пропускают через искусственную почку — аппарат, удаляющий из крови продукты обмена веществ. Искусственная почка подсоединяется к артерии и вене больного: кровь из артерии поступает в аппарат и оттуда, уже очищенная, — в вену. Так как гемодиализ проводится регулярно, больному устанавливают артериовенозный шунт. В артерию и вену на предплечье вводят тефлоновые трубки; их концы выводят наружу и соединяют друг с другом. При очередной процедуре гемодиализа трубки разъединяют между собой и присоединяют к аппарату. После диализа трубки вновь соединяют, и кровь течет по шунту из артерии в вену. Завихрения тока крови в местах соединения трубок и сосудов приводят к тому, что шунт часто тромбируется. Тромбы приходится регулярно удалять, а в тяжелых случаях даже менять шунт. Руководствуясь тем, что аспирин препятствует образованию тромбов, Г. Хартер и соавт.* решили проверить, нельзя ли снизить риск тромбоза назначением небольших доз аспирина (160 мг/сут). Было проведено контролируемое испытание. Все больные, согласившиеся на участие в испытании и не имевшие противопоказаний к аспирину, были случайным образом разделены на две группы: 1-я получала плацебо, 2-я — аспирин. Ни врач, дававший больному препарат, ни больной не знали, был это аспирин или плацебо. Такой способ проведения испытания (он называется двойным слепым) исключает «подсуживание» со стороны врача или больного и, хотя технически сложен, дает наиболее надежные результаты. Исследование проводилось до тех пор, пока общее число больных с тромбозом шунта не достигло 24. Группы практически не различались по возрасту, полу и продолжительности лечения гемодиализом. * Н. R. Harter, J. W. Burch, P. W. Majerus. N. Stanford, J. A. Delmez, С. B. Anderson, C. A. Weerts. Prevention of thrombosis in patients in hemodialysis by low-dose aspirin. N. Engl. J. Med., 301:577—579, 1979. В 1-й группе тромбоз шунта произошел у 18 из 25 больных, во 2-й — у 6 из 19. Можно ли говорить о статистически значимом различии доли больных с тромбозом, а тем самым об эффективности аспирина? Прежде всего оценим долю больных с тромбозами в каждой из групп: А=1§=*72, р2 = — =0,32. 19 Проверим, можно ли применять критерий z'- рассчитаем величины прип(\-р)в каждой из групп: пхрх =18, я,(1-А) = 7 и п2р2 = 6, я2(1-^2) = 13. Как видим, все величины больше 5, поэтому критерий z применить можно. Объединенная оценка доли больных с тромбозом Р = . 6 + 18 = 0,55. Тогда 19 + 25 + SP\-P7 = 0,55(1-0,55) щ п2) ( \ п + — Наконец, вычислим значение z Р\ ~ Pi 25 19 V 0,15 \_ 2 'Pi-pi z = 25 + 19 = 2,33. = 0,15. По табл. 4.1 находим, что для 2% уровня значимости критическое значение z составляет 2,3263, то есть меньше, чем мы получили. А это значит, что снижение риска тромбоза шунта при приеме аспирина статистически значимо. Иными словами, если бы группы представляли собой две случайные выборки из одной совокупности, то вероятность получить наблюдаемые (или большие) различия не превышала бы 2%. ТАБЛИЦЫ СОПРЯЖЕННОСТИ: КРИТЕРИЙ X2 Рассмотренный выше метод хорошо работает, если качественный признак, который нас интересует, принимает два значения (тромбоз есть—нет, марсианин зеленый—розовый). Более того, поскольку метод является прямым аналогом критерия Стьюдента, число сравниваемых выборок также должно быть равно двум. Понятно, что и число значений признака, и число выборок может оказаться большим двух. Для анализа таких случаев нужен иной метод, аналогичный дисперсионному анализу. С виду этот метод, который мы сейчас изложим, сильно отличается от критерия z, но на самом деле между ними много общего. Чтоб не ходить далеко за примером, начнем с только что разобранной задачи о тромбозе шунтов. Теперь мы будем рассматривать не долю, а число больных с тромбозом. Занесем результаты испытания в таблицу (табл. 5.1). Для каждой из групп укажем число больных с тромбозом и без тромбоза. У нас два признака: препарат (аспирин—плацебо) и тромбоз (есть—нет); в таблице указаны все их возможные сочетания, поэтому такая таблица называется таблицей сопряженности. В данном случае размер таблицы 2x2. Посмотрим на клетки, расположенные на диагонали, идущей из верхнего левого в нижний правый угол. Числа в них заметно больше чисел в других клетках таблицы. Это наводит на мысль о связи между приемом аспирина и риском тромбоза. Теперь взглянем на табл. 5.2. Это таблица ожидаемых чисел, которые мы получили бы, если бы аспирин не влиял на риск тромбоза. Как рассчитать ожидаемые числа, мы разберем чуть ниже, а пока обратим внимание на внешние особенности таблицы. Кроме немного пугающих дробных чисел в клетках можно заметить еще одно отличие от табл. 5.1— это суммарные данные по группам в правом столбце и по тромбозам — в нижней строке. В правом нижнем углу — общее число больных в испытании. ОбТаблица 5.1. Тромбозы шунта при приеме плацебо и аспирина Тромбоз есть Тромбоза нет Плацебо 18 7 Аспирин 6 13 ратите внимание, что, хотя числа в клетках на рис. 5.1 и 5.2 разные, суммы по строкам и по столбцам одинаковы. Как же рассчитать ожидаемые числа? Плацебо получали 25 человек, аспирин — 19. Тромбоз шунта произошел у 24 из 44 обследованных, то есть в 54,55% случаев, не произошел — у 20 из 44, то есть в 45,45% случаев. Примем нулевую гипотезу о том, что аспирин не влияет на риск тромбоза. Тогда тромбоз должен с равной частотой 54,55% наблюдаться в группах плацебо и аспирина. Рассчитав, сколько составляет 54,55% от 25 и 19, получим соответственно 13,64 и 10,36. Это и есть ожидаемые числа больных с тромбозом в группах плацебо и аспирина. Таким же образом можно получить ожидаемые числа больных без тромбоза: в группе плацебо — 45,45% от 25, то есть 11,36, в группе аспирина — 45,45% от 19, то есть 8,64. Обратите внимание, что ожидаемые числа рассчитываются до второго знака после запятой — такая точность понадобится при дальнейших вычислениях. Сравним табл. 5.1 и 5.2. Числа в клетках довольно сильно различаются. Следовательно, реальная картина отличается от той, которая наблюдалась бы, если бы аспирин не оказывал влияния на риск тромбоза. Теперь осталось построить критерий, который бы характеризовал эти различия одним числом, и затем найти его критическое значение, — то есть поступить так, как в случае критериев F, t или zОднако сначала вспомним еще один, уже знакомый нам приТаблица 5.2. Тромбозы шунта при приеме плацебо и аспирина: ожидаемые числа Тромбоз есть Тромбоза нет Всего Плацебо 13,64 11,36 25 Аспирин 10,36 8,64 19 Всего 24 20 44 мер — работу Конахана по сравнению галотана и морфина, а именно ту часть, где сравнивалась операционная летальность. Соответствующие данные приведены в табл. 5.3. Форма таблицы такая же, что и табл. 5.1. В свою очередь, табл. 5.4, подобно табл. 5.2, содержит ожидаемые числа, то есть числа, вычисленные исходя из предположения, что летальность не зависит от анестетика. Из всех 128 оперированных в живых осталось 110, то есть 85,94%. Если бы выбор анестезии не оказывал влияния на летальность, то в обеих группах доля выживших была бы такой же и число выживших составило бы: в группе галотана — 85,94% от 61, то есть 52,42, в группе морфина — 85,94% от 67, то есть 57,58. Таким же образом можно получить и ожидаемые числа умерших. Сравним таблицы 5.3 и 5.4. В отличие от предыдущего примера, различия между ожидаемыми и наблюдаемыми значениями очень малы. Как мы выяснили раньше, различий в летальности нет. Похоже, мы на правильном пути. Критерий X2 для таблицы 2x2 Критерий X2 (читается «хи-квадрат») не требует никаких предположений относительно параметров совокупности, из которой извлечены выборки, — это первый из непараметрических критериев, с которым мы знакомимся. Займемся его построением. Во-первых, как и всегда, критерий должен давать одно число, которое служило бы мерой отличия наблюдаемых данных от ожидаемых, то есть в данном случае различия между таблицей наблюдаемых и ожидаемых чисел. Во-вторых, критерий должен учитывать, что различие, ска |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
Скачать книгу "Медико-биологическая статистика" (7.41Mb) |
[каталог] [статьи] [доска объявлений] [обратная связь] |