![]() |
|
|
Медико-биологическая статистикао больных, лечившихся первым и вторым способом), С, и С2 — суммы по столбцам (число больных с первым и вторым исходом), Ои,0]2,02] и 022 — числа в клетках, N — общее число наблюдений (табл. 5.10). Восклицательный знак, как и всегда в математике, обозначает факториал*. Построив все остальные варианты заполнения таблицы, возможные при данных суммах по строкам и столбцам, по этой же формуле рассчитывают их вероятность. Вероятности, которые не превосходят вероятность исходной таблицы (включая саму эту вероятность), суммируют. Полученная сумма — это величина Р для двустороннего варианта точного критерия Фишера. * Факториал числа — произведение всех целых чисел от этого числа до единицы: п\=п х (я - 1)х (л -2)х...х2х 1. Например, 41=4x3x2x1 = - 24. Факториал нуля равен единице. ** W. P. McKinney, М. J. Young, A. Harta, М. В. Lee. The inexact use of Ficher's exact test in six major medical journals. JAMA, 261:3430—3433, 1989. В отличие от критерия X2, существуют одно- и двусторонний варианты точного критерия Фишера. К сожалению, в большинстве учебников описан именно односторонний вариант, он же обычно используется в компьютерных программах и приводится в статьях. Оно и не удивительно — ведь односторонний вариант дает меньшую величину Р. Хуже то, что авторы не считают нужным хотя бы упомянуть, каким вариантом они пользовались. В табл. 5.11 показаны данные, которые получили Мак-Кинни и соавт.**, решив выяснить, насколько часто в статьях из двух самых известных медицинских журналов указан вариант критерия. Выборка невелика, и критерий X2 применить нельзя. Поэтому для анализа использования точного критерия Фишера воспользуемся самим точным критерием Фишера. Из приведенной выше формулы для Р следует, что вероятность при тех же значениях сумм по строкам и столбцам таблицы получить такой же набор чисел в клетках, что в табл. 5.11, равна 9114111112! р = —=2!—=о,ооббб. 1!8!10!4! Это небольшая вероятность. Теперь возьмем наименьшее из чисел в клетках (это единица на пересечении первой строки и первого столбца) и уменьшим его на 1. Числа в остальных клетках изменим так, чтобы суммы по строкам и столбцам остались прежними. Мы получили табл. 5.12. Соответствующая вероятность равна 9!14!11!12! Р= 23! = 0,00027. 0!9!11!3! (Заметим, что числитель можно заново не вычислять, так как его значение зависит только от сумм по строкам и столбцам, которые не изменились.) Поскольку наименьшее число в клетке равно нулю, дальше уменьшать его невозможно. Таким образом, односторонний вариант точного критерия Фишера дает Р = = 0,00666 + 0,00027 = 0,00695. Чтобы рассчитать значение двустороннего варианта точного критерия Фишера, нужно перебрать и все остальные возможные Таблица 5.12. Вариант критерия Не указан Всего New England Journal of Medicine 0 Lancet 11 Всего 11 варианты заполнения таблицы при условии неизменности сумм по строкам и столбцам. Получить все эти варианты несложно — надо только заметить, что при постоянных суммах по строкам и столбцам значения во всех четырех клетках полностью определяются значением в любой из них. Возьмем число все в той же левой верхней клетке и будем увеличивать его на 1, пересчитывая каждый раз числа в остальных клетках. В результате мы получим восемь вариантов заполнения (табл. 5.13). Для двух последних вариантов вероятность не превышает вероятности исходного варианта заполнения (0,00666), составляя соответственно 0,00242 и 0,00007. Таким образом, кроме исходного у нас есть еще три варианта «маловероятного» заполнения таблицы; просуммировав соответствующие вероятности и прибавив к ним вероятность исходного варианта, получим Р = 0,00666 + 0,00027 + +0,00242 + 0,00007 = 0,00944. Это и есть значение двустороннего варианта точного критерия Фишера. Итак, различие частоты правильного использования точного критерия Фишера в журналах New England Journal of Medicine и Lancet статистически значимо (P = 0,009). В данном случае общий вывод при переходе от одностороннего к двустороннему варианту не изменился, однако так бывает далеко не всегда. Еще более грубая ошибка происходит, когда автор рассчитывает только вероятность получения исходной таблицы, пренебрегая построением остальных вариантов заполнения. Естественно, это приводит к сильному занижению Р, то есть к «выявлению» различий там, где их нет. В заключение изложим правила пользования точным критерием Фишера. • Вычислите вероятность получить исходную таблицу. • Постройте остальные возможные варианты заполнения таблицы при неизменных суммах по строкам и столбцам. Для этого в одной из клеток проставьте все целые числа от нуля до максимально возможного, пересчитывая числа в остальных клетках так, чтобы суммы по строкам и столбцам оставались неизменными. • Вычислите вероятности для всех полученных таблиц. • Просуммируйте вероятность получить исходную таблицу и все вероятности, которые ее не превышают. Итак, теперь мы умеем работать не только с количественными, но и с качественными признаками. Но вопрос, занимавший нас и в этой, и в предыдущих главах, был в сущности одним и тем же — как оценить статистическую значимость различий. В следующей главе мы взглянем на другую сторону медали. Именно, мы попытаемся понять, что означает отсутствие статистически значимых различий. ЗАДАЧИ 5.1. Т. Бишоп (Т. Bishop. High frequency neural modulation in dentistry. /. Am. Dent. Assoc., 112:176—177,1986) изучил эффективность высокочастотной стимуляции нерва в качестве обезболивающего средства при удалении зуба. Все больные подключались к прибору, но в одних случаях он работал, в других был выключен. Ни стоматолог, ни больной не знали, включен ли прибор. Позволяют ли следующие данные считать высокочастотную стимуляцию нерва действенным анальгезирующим средством? Прибор включен Прибор выключен Боли нет 24 3 Боль есть 6 17 5.2. Синдром внезапной детской смерти — основная причина смерти детей в возрасте от 1 недели до 1 года. Обычно смерть наступает на фоне полного здоровья незаметно, во сне, поэтому определение факторов риска имеет первостепенное значение. Считается, что синдром внезапной детской смерти чаще случается у недоношенных детей, негров, а также в семьях с низкими доходами. Н. Левак и соавт. (N. Lewak et al. Sudden infant death syndrome risk factors: prospective data review. Clin. Pediatr., 18:404— 411, 1979) решили уточнить эти данные. Исследователи собрали сведения о 19047 детях, родившихся в одном из роддомов Окленда, штат Калифорния, с 1960 по 1967 г. Судьбу детей проследили до 1 года. Данных о 48 детях получить не удалось. От синдрома внезапной детской смерти умерли 44 ребенка. Данные о предполагаемых факторах риска представлены в табл. 5.14. Найдите признаки, связанные с риском синдрома внезапной детской смерти. 5.3. Могло ли повлиять отсутствие данных о 48 детях на результаты исследования? Если да, то как? 5.4. Р. Феннел и соавт. (R. Fennell et al. Urinary tract infections in children: effect of short course antibiotic therapy on recurrence rate in children with previous infections. Clin. Pediatr., 19:121 — 124,1980) сравнили эффективность трех антибиотиков при рецидивиру ющей инфекции мочевых путей у девочек 3—16 лет. После короткого курса одного из антибактериальных препаратов (назначенного случайным образом) в течение года делали повторные посевы мочи. При выявлении бактериурии констатировали рецидив. Были получены следующие результаты. Рецидив Есть Нет Ампициллин 20 7 Триметоприм/сульфаметоксазол 24 21 Цефалексин 14 2 Есть ли основания говорить о разной эффективности препаратов? Если да, то какой лучше? 5.5. А. О'Нил и соавт. (A. O'Neil et al. A waterborn epidemic of acute infectious non-bacterial gastroenteritis in Alberta, Canada. Can. J. Public Health, 76:199—203, 1985) недавно сообщили о вспышке гастроэнтерита в маленьком канадском городке. Исследователи предположили, что источником инфекции была водопроводная вода. Они исследовали зависимость между количеством выпитой воды и числом заболевших. Какие выводы можно сделать из приводимых данных? Количество выпитой воды, стаканов в день Число заболевших Число не заболевших Менее 1 39 121 От 1 до 4 265 258 5 и более 265 146 5.6. Как правило, качество исследования выше, а соответствие собираемых данных поставленному вопросу точнее, если данные собираются специально для этого исследования после его планирования. Р. и С. Флетчеры (R. Fletcher, S. Fletcher. Clinical research in general medical journals: a 30-year perspective. N. Engl. J. Med., 301:180—183, 1979) исследовали 612 работ, случайным образом выбранных из журналов Journal of American Medical Association, Lancet и New England Journal of Medicine, чтобы определить, собирали ли их авторы свои данные до или после планирования исследования. Вот что удалось обнаружить: 1946 1956 1966 1976 Число рассмотренных 151 149 157 155 работ Процент работ, где данные собирали после планирования 76 71 49 44 исследования до планирования 24 29 51 56 исследования Оцените статистическую значимость различия долей. Если различия есть, то можно ли сказать, что положение меняется к лучшему? 5.7. Одна из причин инсульта — окклюзия сонной артерии. Чтобы выяснить, какое лечение — медикаментозное или хирургическое — дает в этом случае лучшие результаты, У. Филдс и соавт. (W. Fields et al. Joint study of extracranial arterial occlusion, V: Progress report of prognosis following surgery or nonsurginal treatment for transient ishemic attacks and cervical carotid artery lesions. JAMA, 211:1993—2003, 1970) сравнили долгосрочный прогноз у леченных двумя методами. Повторный инсульт или смерть Лечение Да Нет Хирургическое 43 36 Медикаментозное 53 19 Можно ли говорить о превосходстве одного из видов лечения? 5.8. В диагностике ишемической болезни сердца используют нагрузочную пробу: с помощью физической нагрузки вызывают ишемию миокарда, которую выявляют на ЭКГ. Существует другой метод: ишемию вызывают внутривенным введением дипи-ридамола, а выявля |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
Скачать книгу "Медико-биологическая статистика" (7.41Mb) |
[каталог] [статьи] [доска объявлений] [обратная связь] |