![]() |
|
|
Медико-биологическая статистикагруппы стали есть только макароны, третьей группы — мясо, четвертой — фрукты. Через месяц у всех участников эксперимента измерили сердечный выброс. Результаты представлены на рис. 3.2. * Максимальную приемлемую вероятность отвергнуть верную нулевую гипотезу называют уровнем значимости и обозначают а. Обычно принимают а =0,05. Анализ данных мы начинаем с формулировки нулевой гипотезы. В данном случае она заключается в том, что ни одна из диет не влияет на сердечный выброс. Откроем маленький секрет — дело обстоит именно так. На рис. 3.1 показано распределение сердечного выброса для всех жителей городка: каждый житель представлен кружком. Члены наших экспериментальных групп изображены заштрихованными кружками. Все четыре группы представляют собой просто случайные выборки из нормально распределенной совокупности. Однако как убедиться в этом, располагая только результатами эксперимента (рис 3.2)? Как видно из рисунка 3.2, группы все же различаются по средней величине сердечного выброса. Вопрос можно поставить так: какова вероятность получить такие различия, извлекая случайные выборки из нормально распределенной совокупности? Прежде чем ответить на этот вопрос, нам надо получить показатель, характеризующий величину различий. Оставим на время наш эксперимент и зададимся вопросом, что заставляет нас, взглянув на несколько выборок, думать, что различия между ними не случайны. Попробуем (исключительно в учебных целях) так изменить наши данные, чтобы читатель поверил во влияние диеты на сердечный выброс. Результат этой подтасовки представлен на рис. 3.3. Взаимное расположение точек в группах осталось прежним, но сами группы значительно раздвинуты по горизонтальной оси. Сравнив рис. 3.2 и 3.3, всякий скажет, что четыре вы4 - 7038 Контроль (DO Макароны 0 0 0 0 0 Мясо © о © О © о © Фрукты =====^============================== Выборочные л ® л О • О средние Рис. 3.2. Исследователь не может наблюдать совокупность; все, чем он располагает, — это его экспериментальные группы. На этом рисунке данные с рис. 3.1 представлены такими, какими их видит исследователь. Результаты в разных группах несколько различаются. Вызваны эти различия диетой или просто случайностью? Внизу рисунка показаны средние величины сердечного выброса в четырех группах (выборочные средние), а также среднее и стандартное отклонение этих четырех средних. борки на рис. 3.2 «не различаются», а выборки на рис. 3.3 — «различаются». Почему? Сравним разброс значений внутри выборок с разбросом выборочных средних. Разброс выборочных средних на рис. 3.2 значительно меньше разброса значений в каждой из выборок. На рис. 3.3 картина обратная — разброс выборочных средних превышает разброс в каждой из выборок. То же самое можно сказать и о данных на рис. 3.4, хотя здесь три выборочных Контроль © © © Макароны 0 0 0 0 0 0 Мясо О © о © о © Фрукты ? ? — Выборочные • © 0 © средние _ _ Рис. 3.3. Те же группы, что на предыдущих рисунках; теперь они раздвинуты по горизонтальной оси. Вряд ли такие различия можно отнести за счет случайности — влияние диеты налицо! Обратите внимание, что разброс выборочных средних превышает разброс внутри групп. На предыдущем рисунке картина была иной — разброс выборочных средних был меньше разброса внутри групп. средних близки друг другу и заметно отличается от них только одна. Итак, чтобы оценить величину различий, нужно каким-то образом сравнить разброс выборочных средних с разбросом значений внутри групп. Сейчас мы покажем, как это можно сделать с помощью дисперсии (как мы выяснили в предыдущей главе, этот показатель характеризует именно разброс), но прежде сделаем несколько замечаний. Дисперсия правильно характеризует разброс только в том случае, если совокупность имеет нормальное распределение (вспомните Контроль Макароны © © © © © © © Мясо Фрукты © © ООО О О Выборочные средние ©I Рис. 3.4. Еще один возможный исход эксперимента с диетой. В трех группах средние примерно равны, и только в группе макаронной диеты сердечный выброс явно повысился. Такой результат, как и предыдущий, никто не отнесет на счет случайности. И снова разброс выборочных средних превышает разброс внутри групп. обследование юпитериан, чуть было не приведшее к ошибочным заключениям). Поэтому и критерий, основанный на дисперсии, применим только для нормально распределенных совокупностей. Вообще, все критерии, основанные на оценке параметров распределения (они называются параметрическими), применимы только в случае, если данные подчиняются соответствующему распределению (чаще всего речь идет о нормальном распределении). Если распределение отличается от нормального, следует пользоваться так называемыми непараметрическими критериями. Эти критерии не основаны на оценке параметров распределения и вообще не требуют, чтобы данные подчинялись какому-то определенному типу распределения. Более подробно мы рассмотрим непараметри© ©00 © © © © О © О О © © I—•—1 Выборочные С@© ? средние Рис. 3.5. Еще один набор из четырех случайных выборок по семь человек в каждой, извлеченных из совокупности в 200 человек (население городка, где изучали влияние диеты на сердечный выброс). ческие критерии в гл. 5, 8 и 10. Непараметрические критерии дают более грубые оценки, чем параметрические. Параметрические методы более точны, но лишь в случае, если правильно определено распределение совокупности. ДВЕ ОЦЕНКИ ДИСПЕРСИИ Мы уже выяснили, что чем больше разброс средних и чем меньше разброс значений внутри групп, тем меньше вероятность того, что наши группы — это случайные выборки из одной совокупности. Осталось только оформить это суждение количественно. Дисперсию совокупности можно оценить двумя способами. Во-первых, дисперсия, вычисленная для каждой группы, — это оценка дисперсии совокупности. Поэтому дисперсию совокупности можно оценить на основании групповых дисперсий. Такая оценка не будет зависеть от различий групповых средних. Например, для данных на рис. 3.2 и 3.3 она будет одинаковой. Во-вторых, разброс выборочных средних тоже позволяет оценить дисперсию совокупности. Понятно, что такая оценка дисперсии зависит от различий выборочных средних. Если экспериментальные группы — это четыре случайные выборки из одной и той же нормально распределенной совокупности (применительно к нашему эксперименту это значило бы, что диета не влияет на сердечный выброс), то обе оценки дисперсии совокупности дали бы примерно одинаковые результаты. Поэтому, если эти оценки оказываются близки, то мы не можем отвергнуть нулевую гипотезу. В противном случае мы отвергаем нулевую гипотезу, то есть заключаем: маловероятно, что мы получили бы такие различия между группами, если бы они были просто четырьмя случайными выборками из одной нормально распределенной совокупности. Перейдем к вычислениям. Как оценить дисперсию совокупности по четырем выборочным дисперсиям? Если верна гипотеза о том, что диета не влияет на величину сердечного выброса, то любая из них дает одинаково хорошую оценку. Поэтому в качестве оценки дисперсии совокупности возьмем среднее выборочных дисперсий. Эта оценка называется внутригрупповой дисперсией; обозначим— выборочные оценки дисперсии в группах, питавшихся как обычно (контроль), макаронами, мясом и фруктами. Дисперсия внутри каждой группы вычисляется относительно среднего для группы. Поэтому внутригрупповая дисперсия не зависит от того, насколько различаются эти средние. Оценим теперь дисперсию совокупности по выборочным средним. Так как мы предположили, что все четыре выборки извлечены из одной совокупности, стандартное отклонение четырех выборочных средних служит оценкой ошибки среднего. НаТем самым, дисперсию совокупности а2 можно рассчитать следующим образом: а2 = «с2-. л Воспользуемся этим, чтобы оценить дисперсию совокупности по разбросу значений выборочных средних. Эта оценка называется межгрупповой дисперсией; обозначим ее 5меж. 2 _ 2 ^меж — ' где 5- — оценка стандартного отклонения выборки из четырех средних. Если верна нулевая гипотеза, то как внутригрупповая, так и межгрупповая дисперсии служат оценками одной и той же дисперсии и должны быть приближенно равны. Исходя из этого, вычислим критерий F: Дисперсия совокупности, оцененная по выборочным средним F = -~ ? ? — -» Дисперсия совокупности, оцененная по выборочным дисперсиям или s2 17 ° меж F =_. ° вну И числитель, и знаменатель этого отношения — это оценки одной и той же величины — дисперсии совокупности а2, поэтому значение F должно были близко к 1. Для четырех групп, представленных на рис. 3.2, значение F действительно близко к единице. Теперь наши исследователи влияния диеты на сердечный выброс могут сделать определенные выводы. Полученные в эксперименте данные не противоречат нулевой гипотезе, следовательно, нет оснований считать, что диета влияет на сердечный выброс. Что касается данных, которые мы специально сконструировали, чтобы убедить читателя в таком «влиянии» (рис. 3.3), то для них ,Г = 68,0. Для данных, изображенных на рис. 3.4, F = 24,5. Как видим, величина F хорошо согласуется с впечатлением, которое складывается при взгляде на рисунок. Итак, если F значительно превышает 1, нулевую гипотезу следует отвергнуть. Если же значение F близко к 1, нулевую гипотезу следует принять. Осталось понять, начиная с какой именно величины F следует отвергать нулевую гипотезу. КРИТИЧЕСКОЕ ЗНАЧЕНИЕ F Если извлекать случайные выборки из нормально распределенной совокупности, значение F будет меняться от опыта к опыту. Например, на рис. 3.5 представлен еще один набор из четырех случайных выборок по семь человек в каждой, извлеченных из нашей совокупности в 200 человек. На этот раз F = 0,5. Положим, что нам удалось повторить эксперимент с жителями того же городка, скажем, 200 р |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
Скачать книгу "Медико-биологическая статистика" (7.41Mb) |
[каталог] [статьи] [доска объявлений] [обратная связь] |